Natural Acetylenes. Part 53. ${ }^{1}$ A Route to $\mathrm{C}_{5}, \mathrm{C}_{6}$, and C_{7} cis- and trans-Alk-3-en-1-ynes via their Trimethylsilyl Derivatives ${ }^{2}$

By Iain W. Farrell, Milton T. W. Hearn, and Viktor Thaller,* The Dyson Perrins Laboratory, Oxford University, Oxford OX1 3QY

> cis- and trans-1-Trimethylsilyl-pent-3-en-1-yne, -hex-3-en-1-yne, and -hept-3-en-1-yne have been prepared by fractional distillation of their cis-trans-mixtures and shown to provide a convenient route for the synthesis of the corresponding stereoisomeric terminal acetylenes.

Pent- and hex-3-en-l-ynes have been frequently required in the synthesis of natural acetylenes, e.g. transpentenyne (la) for the C_{17} alcohol (2) from dahlias ${ }^{3}$ and cis-hexenyue (lb) for the acetylenic furyl ketone (3) present in the broad bean. ${ }^{4}$ The need to synthesise labelled 14 -cis- and 14-trans-dehydrocrepenynate (4) for biosynthetic experiments necessitated the preparation of cis- and trans-heptenynes (1c) and led to a convenient general route to the stereoisomeric $\mathrm{C}_{5}-\mathrm{C}_{7}$ alkenynes.

Alk-3-en-1-ynes can be synthesised in a number of ways, some leading predominantly to one of the stereoisomers. ${ }^{5}$ Most commonly the cis-trans-mixture is obtained either from alk-3-ynyl tosylates ${ }^{4,6,7}$ (this route has

[^0]been used in the present investigation) or from alk-2-ynyl ethers. ${ }^{8}$ The mixtures can be separated into stereoisomers by fractional distillation, as described for the $\mathrm{C}_{5}{ }^{9}$ and $\mathrm{C}_{7}{ }^{7}$ compounds, or by g.l.c. as described for the C_{6} compound. ${ }^{4}$ Neither separation is particularly convenient because of the very close b.p.s of the stereoisomers, the losses incurred by the high volatility of the alkenynes, and their instability.

Silylation of the ethynyl group is known both to stabilise terminal acetylenes and to increase their b.p.s. ${ }^{10}$ The cis-trans-mixtures of the alkenynes (la-c) were therefore silylated via their Grignard or lithio derivatives, most efficiently (ca. 80% yields) when n-butyl-lithium

[^1]was added to the mixture of trimethylsilyl chloride and the cis-trans-alkenyne (cf. silylation of benzenes ${ }^{11}$). The resulting trimethylsilyl derivatives ($5 \mathrm{a}-\mathrm{c}$) were easy
\[

$$
\begin{aligned}
& \mathrm{RCH}=\mathrm{CH} \cdot \mathrm{C} \equiv \mathrm{CH} \\
& \text { (l) } \mathrm{a} ; \mathrm{R}=\mathrm{Me} \\
& \text { b; } \mathrm{R}=\mathrm{E} \mathrm{t} \\
& \text { c; } R=P^{n}
\end{aligned}
$$
\]

to handle and the b.p.s of the stereoisomers differed sufficiently in each case (by ca. $6{ }^{\circ} \mathrm{C}$) to make their separation by fractional distillation convenient (a spinning band column was used). The cis- and trans-isomer fractions of $(5 \mathrm{a}-\mathrm{c})$ were characterised and their stereochemical purity ($\geqslant 94 \%$) was determined by g.l.c. The cis- and trans-alkenynes ($\mathrm{la}-\mathrm{c}$) could be regenerated as ethereal solutions by cleaving the carbon-silicon bond with silver nitrate ${ }^{\mathbf{1 2}}$ or fluoride ion, ${ }^{5}$ the cleavage proceeding in $85-90 \%$ yields. For example, by using the fluoride ion cleavage, an ethereal solution of the cis- and trans-hexenynes (lb) was obtained from the cis-transalkenyne mixture in 60% overall yield.

EXPERIMENTAL

For spectral techniques see Part $41 .{ }^{13}$
Spinning band distillations were carried out in a NesterFaust Annular Still (NFA-200) operating at $7000 \mathrm{rev} . \mathrm{min}^{-1}$. For g.l.c. a Pye 104 series 24 instrument with 10% polyethylene glycol succinate on Embacel ($60-100$ mesh) packed in a $150 \times 0.3 \mathrm{~cm}$ column (N_{2} flow $45 \mathrm{ml} \mathrm{min}{ }^{-1}$) was used.

Tetrahydrofuran (THF) was purified by refluxing with Na wire and benzophenone prior to distillation and was stored over Linde $4 \AA$ molecular sieve. Solutions of $\mathrm{Bu}^{n} \mathrm{Li}$ in hexane were standardised by the double titration method using benzyl chloride.
(a) Silylation via the Li Salts.-cis- and trans-1-Trimethyl-silylpent-3-en-1-yne (5a). cis-trans-Pent-3-en-1-yne (1a) ${ }^{6}$ ($4.5 \mathrm{~g}, 68 \mathrm{mmol}$; 55% cis-isomer) and $\mathrm{Me}_{3} \mathrm{SiCl}(7.49 \mathrm{~g}, 69$ mmol) in anhydrous THF (50 ml) were cooled ($\mathrm{Me}_{2} \mathrm{CO}$-solid CO_{2}) under $\mathrm{N}_{2} . \quad \mathrm{Bu}^{\mathrm{n}} \mathrm{Li}$ in hexane ($42.5 \mathrm{ml}, 68 \mathrm{mmol}$) was added dropwise to the stirred solution (the red-brown colour of the acetylide ion was briefly seen). After the addition was completed a fine white precipitate slowly appeared. The stirred mixture was allowed to warm to $20^{\circ} \mathrm{C}$ over 12 h . It was then poured into an excess of dil. HCl and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The extract was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under N_{2} at 760 mmHg . The residue was fractionally distilled and gave cis-trans-1-trimethylsilylpent-3-en-1-yne ($8.4 \mathrm{~g}, 89 \%$; 56% cis-isomer), b.p. $68-75^{\circ}$ at 50 mmHg . The mixture of isomers (12.35 g) was separated by fractional

[^2]distillation on a spinning-band column using p-cymene as chaser and gave cis-1-trimethylsilylpent-3-en-1-yne [cis-(5a)] ($5.38 \mathrm{~g}, 43.5 \%$; contaminated with 2.5% trans-isomer), b.p. 62° at 46 mmHg (Found: C, 70.1; H, 10.4. $\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{Si}$ requires $\mathrm{C}, 69.5 ; \mathrm{H}, 10.1 \%), n_{\mathrm{D}}{ }^{19} 1.4575, t_{\mathrm{R}}\left(48.5^{\circ} \mathrm{C}\right) 3.0 \mathrm{~min}$, $\nu_{\text {max }}\left(\mathrm{CCl}_{4}\right) 3030,2150$, and $2120 \mathrm{~cm}^{-1}$, $\nu_{\text {max }}\left(\mathrm{CS}_{2}\right) 1250$, 840 br , and $720 \mathrm{~cm}^{-1}, \tau\left(\mathrm{CCl}_{4}\right) 9.98\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{3}\right), 8.3(3 \mathrm{H}$, dd, $J 7$ and $\left.1.5 \mathrm{~Hz}, \mathrm{CH}_{3} \cdot \mathrm{CH}=\mathrm{CH}\right), 4.8(1 \mathrm{H}, \mathrm{dq}, J 11$ and 1.5 $\left.\mathrm{Hz}, \mathrm{CH}_{3} \cdot \mathrm{CH}=\mathrm{C} H\right)$, and $4.2(1 \mathrm{H}, \mathrm{dq}, J 11$ and 6.5 Hz , $\mathrm{CH}_{3} \cdot \mathrm{CH}=\mathrm{CH}$), $m / e 138\left(M^{+}, 50 \%\right), 123(100), 107(8), 95(27)$, 81 (10), 69 (22), and 67 (22); and the trans-isomer [trans(5a)] (3.9 g, 29%; contaminated with 6% cis-isomer), b.p. 68° at 46 mmHg (Found: C, 69.5; H, 10.1. $\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{Si}$ requires $\mathrm{C}, 69.5 ; \mathrm{H}, 10.1 \%), n_{\mathrm{D}}{ }^{19} 1.4625, t_{\mathrm{R}}\left(48{ }^{\circ} \mathrm{C}\right) 4.4 \mathrm{~min}, \nu_{\text {max }}\left(\mathrm{CCl}_{4}\right)$ $3030,2170,2130$, and $955 \mathrm{~cm}^{-1}, \nu_{\text {max }}\left(\mathrm{CS}_{2}\right) 840 \mathrm{br} \mathrm{cm}^{-1}$, $\tau\left(\mathrm{CCl}_{4}\right) 9.9\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{3}\right), 8.3(3 \mathrm{H}$, dd, $J 7$ and 2 Hz , $\mathrm{CH}_{3} \cdot \mathrm{CH}=\mathrm{CH}$), $4.7\left(1 \mathrm{H}, \mathrm{dq}, J 16\right.$ and $\left.2 \mathrm{~Hz}, \mathrm{CH}_{3} \cdot \mathrm{CH}=\mathrm{CH}\right)$, and $4.0\left(1 \mathrm{H}, \mathrm{dq}, J 16\right.$ and $\left.6.5 \mathrm{~Hz}, \mathrm{CH}_{3} \cdot \mathrm{CH}=\mathrm{CH}\right), m / e 138$ ($M^{+}, 25 \%$), 123 (100), 109 (7), 107 (6), 97 (7), 95 (12), 83 (10), 6 (15), and 59 (15). An intermediate fraction ($0.9 \mathrm{~g}, 7.3 \%$) had a cis: trans ratio of ca. 2:1.
cis- and trans-1-Trimethylsilylhex-3-en-1-yne (5b). Analogously, cis-trans-hex-3-en-1-yne (1b) ${ }^{4}(7.6 \mathrm{~g}, 95 \mathrm{mmol}$; 55% cis-isomer), $\mathrm{Me}_{3} \mathrm{SiCl}(10.9 \mathrm{~g}, 100 \mathrm{mmol})$, and $\mathrm{Bu}{ }^{\mathrm{LL}}$ in hexane ($59 \mathrm{ml}, 95 \mathrm{mmol}$) in THF (100 ml) gave, after distillation, cis-trans-1-Me ${ }_{3} \mathrm{Si}$-hex-3-en-1-yne (5b) ($11.4 \mathrm{~g}, 79 \%$; 53% cis-isomer), b.p. $58-72^{\circ}$ at 12 mmHg . Separation of the mixture (23 g) gave cis-1-trimethylsilylhex-3-en-1-yne [cis-(5b)] ($10.7 \mathrm{~g}, 46.5 \%$; contaminated with $<0.1 \%$ transisomer), b.p. 72° at 56 mmHg (Found: C, $71.0 ; \mathrm{H}, 10.8$. $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{Si}$ requires C, $\left.71.0 ; \mathrm{H}, 10.7 \%\right)$, $n_{\mathrm{D}}{ }^{20} 1.4558, t_{\mathrm{R}}\left(52{ }^{\circ} \mathrm{C}\right)$ $3.5 \mathrm{~min}, v_{\text {max }}\left(\mathrm{CCl}_{4}\right) 3020,2160$, and $2140 \mathrm{~cm}^{-1}, \nu_{\text {max }}\left(\mathrm{CS}_{2}\right)$ 1250,840 , and $740 \mathrm{~cm}^{-1}, \tau\left(\mathrm{CCl}_{4}\right) 9.98\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{3}\right), 9.15$ $\left(3 \mathrm{H}, \mathrm{t}, J 7 \mathrm{~Hz}, \mathrm{CH}_{3} \cdot \mathrm{CH}_{2}\right), 7.9\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}=\right), 4.8$ $\left(1 \mathrm{H}, \mathrm{dt}, J 10\right.$ and $\left.1.5 \mathrm{~Hz}, \mathrm{CH}_{2} \cdot \mathrm{CH}=\mathrm{C} H \cdot \mathrm{C} \equiv\right)$, and $4.3(1 \mathrm{H}, \mathrm{dt}$, $J 10$ and $\left.7 \mathrm{~Hz}, \mathrm{CH}_{2} \cdot \mathrm{CH}=\mathrm{CH} \cdot \mathrm{C} \equiv\right), m / e 152\left(M^{+}, 20 \%\right), 137$ (100), 123 (6), 109 (11), 97 (7), 95 (6), 73 (10), and 50 (13); and the trans-isomer [trans-(5 b$)](8.23 \mathrm{~g}, \mathbf{3 6} \%$; contaminated with 2% cis-isomer), b.p. $84-86^{\circ}$ at 56 mmHg (Found: $\mathrm{C}, 71.2 ; \mathrm{H}, 10.8 . \quad \mathrm{C}_{9} \mathrm{H}_{16} \mathrm{Si}$ requires $\mathrm{C}, 71.0 ; \mathrm{H}, 10.7 \%$), $n_{\mathrm{D}}{ }^{20} 1.4652, t_{\mathrm{R}}\left(52{ }^{\circ} \mathrm{C}\right) 7.5 \mathrm{~min}, \nu_{\text {max. }}\left(\mathrm{CCl}_{4}\right) 3020,2180,2140$, and $950 \mathrm{~cm}^{-1}, \nu_{\text {max. }}\left(\mathrm{CS}_{2}\right) 1250$ and $840 \mathrm{~cm}^{-1}, \tau\left(\mathrm{CCl}_{4}\right) 9.98(9 \mathrm{H}$, s, SiMe_{3}) $9.1\left(3 \mathrm{H}, \mathrm{t}, J 7 \mathrm{~Hz}, \mathrm{CH}_{3} \cdot \mathrm{CH}_{2}\right), 8.0\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3} \cdot\right.$ $\left.\mathrm{CH}_{2} \cdot \mathrm{CH}=\right), 4.75\left(1 \mathrm{H}, \mathrm{dt}, J 16\right.$ and $\left.1.5 \mathrm{~Hz}, \mathrm{CH}_{2} \cdot \mathrm{CH}=\mathrm{CH} \cdot \mathrm{C} \equiv\right)$, and $4.0\left(1 \mathrm{H}, \mathrm{dt}, J 16\right.$ and $\left.7 \mathrm{~Hz}, \mathrm{CH}_{2} \cdot \mathrm{CH}=\mathrm{CH} \cdot \mathrm{C} \equiv\right), m / e 152$ $\left(M^{+}, 20 \%\right), 137(100), 122(4), 109(7), 107(6), 97(4), 83(14)$, 81 (5), 73 (6), 69 (7), and 59 (14). An intermediate fraction, b.p. $72-84^{\circ}$ at $56 \mathrm{mmHg}(0.77 \mathrm{~g}, 3.3 \%)$, had a cis: trans ratio of $c a .2: 1$.
cis- and trans-1-Trimethylsilylhept-3-en-1-yne (5c). cis-trans-Hept-3-en-1-yne (1c) ${ }^{7}(8.7 \mathrm{~g}, 92.5 \mathrm{mmol}, 55 \%$ cisisomer), $\mathrm{Me}_{3} \mathrm{SiCl}$ ($12.2 \mathrm{~g}, 112 \mathrm{mmol}$), and $\mathrm{Bu}^{\mathrm{n}} \mathrm{Li}$ in hexane ($55 \mathrm{ml}, 93.5 \mathrm{mmol}$) in THF (90 ml) gave on distillation cis-trans-1-Me ${ }_{3} \mathrm{Si}$-hept-3-en-1-yne (5c) ($11.8 \mathrm{~g}, 77 \%$; 57% cisisomer), b.p. $68-77^{\circ}$ at 12 mmHg . Separation of the mixture (26 g) using tetrahydronaphthalene as chaser, gave cis-1-trimethylsilylhept-3-en-1-yne [cis-(5c)] (12.0 g, 46\%; contaminated with $<0.1 \%$ trans-isomer), b.p. $92-94^{\circ}$ at 42 mmHg (Found: $\mathrm{C}, 71.6 ; \mathrm{H}, 11.1 . \mathrm{C}_{10} \mathrm{H}_{18} \mathrm{Si}$ requires C , $72.1 ; \mathrm{H}, 10.9 \%), n_{\mathrm{D}}{ }^{20} 1.4608, t_{\mathrm{R}}\left(53{ }^{\circ} \mathrm{C}\right) 6.2 \mathrm{~min}, \nu_{\text {max. }}\left(\mathrm{CCl}_{4}\right)$ 3010,2150 , and $2115 \mathrm{~cm}^{-1}, v_{\text {max }}\left(\mathrm{CS}_{2}\right) 1250,840$, and 735 $\mathrm{cm}^{-1}, \tau\left(\mathrm{CCl}_{4}\right) 9.98\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{3}\right), 9.2\left(3 \mathrm{H}, \mathrm{t}, J 7 \mathrm{~Hz}, \mathrm{CH}_{3}\right.$.
${ }^{13}$ I. W. Farrell, J. W. Keeping, M. G. Pellatt, and V. Thaller, J.C.S. Perkin I, 1973, 2642.
$\left.\mathrm{CH}_{2}\right), 8.8\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}_{2}\right), 7.9\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \cdot \mathrm{CH}_{2}\right.$. $\mathrm{CH}=), 4.8\left(\mathrm{l} \mathrm{H}, \mathrm{dt}, J 11\right.$ and $\left.1 \mathrm{~Hz}, \mathrm{CH}_{2} \cdot \mathrm{CH}=\mathrm{CH} \cdot \mathrm{C} \equiv\right)$, and 4.3 $\left(1 \mathrm{H}, \mathrm{dt}, J 11\right.$ and $\left.7 \mathrm{~Hz}, \mathrm{CH}_{2} \cdot \mathrm{CH}=\mathrm{CH} \cdot \mathrm{C} \equiv\right), m / e 166\left(M^{+}\right.$, 16%), 151 (100), 137 (2), 124 (4), 122 (2), 109 (12), 107 (6), 97 (4), 83 (11), 73 (15), and 59 (20); and the trans-isomer [trans-(5c)] ($9.24 \mathrm{~g}, 35.5 \%$; contaminated with 1% cisisomer), b.p. 101° at 42 mmHg (Found: C, $72.5 ; \mathrm{H}, 11.1$. $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{Si}$ requires $\left.\mathrm{C}, 72.1 ; \mathrm{H}, 10.9 \%\right), n_{\mathrm{D}}{ }^{20} 1.4736, t_{\mathrm{R}}\left(53{ }^{\circ} \mathrm{C}\right)$ $11.7 \mathrm{~min}, v_{m a x}\left(\mathrm{CCl}_{4}\right) 3010,2170,2135$, and $955 \mathrm{~cm}^{-1}$, $\nu_{\text {max. }}\left(\mathrm{CS}_{2}\right) 1250$ and $840 \mathrm{~cm}^{-1}, \tau\left(\mathrm{CCl}_{4}\right) 9.98\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{3}\right)$, $9.2\left(3 \mathrm{H}, \mathrm{t}, J 7 \mathrm{~Hz}, \mathrm{CH}_{3} \cdot \mathrm{CH}_{2}\right), 8.7\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}_{2}\right)$, $8.0\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}=\right), 4.8(1 \mathrm{H}, \mathrm{dt}, J 16$ and 1 Hz , $\left.\mathrm{CH}_{2} \cdot \mathrm{CH}=\mathrm{CH} \cdot \mathrm{C} \equiv\right)$, and $4.0\left(1 \mathrm{H}, \mathrm{dt}, J 16\right.$ and $7 \mathrm{~Hz}, \mathrm{CH}_{2} \cdot \mathrm{CH}=$ $\mathrm{CH} \cdot \mathrm{C} \equiv$), $m / e 166$ ($M^{+}, 20 \%$), 153 (7), 151 (100), 122 (8), 109 (12), 107 (8), 96 (5), 94 (5), 83 (11), 73 (10), and 59 (13). An intermediate fraction, b.p. $94-101^{\circ}$ at $42 \mathrm{mmHg}(0.92 \mathrm{~g}$, 3.5%), had a cis : trans ratio of $c a .1: 2$.
(b) Silylation via the Grignard Reagents.-cis-trans-1-Trimethylsilyl-pent-3-en-1-yne (5a). cis-trans-Pent-3-en-1yne (la) ($9.2 \mathrm{~g}, 140 \mathrm{mmol}$) in THF (20 ml) was added at $0{ }^{\circ} \mathrm{C}$ to a stirred solution of EtMgBr , [from $\mathrm{EtBr}(18.6 \mathrm{~g}, 172$ mmol) and Mg turnings ($4.3 \mathrm{~g}, 172 \mathrm{mmol}$) in THF (100 ml)]. After $1 \mathrm{~h}, \mathrm{Me}_{3} \mathrm{SiCl}(18.6 \mathrm{~g}, 172 \mathrm{mmol})$ in THF (20 ml) was added to the mixture at $0{ }^{\circ} \mathrm{C}$ and stirring was continued for 12 h at $20^{\circ} \mathrm{C}$. The mixture was poured into an excess of dil. $\mathrm{HCl}-\mathrm{ice}$ and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The extract was washed with brine and dried (MgSO_{4} and then mol. sieve). Concentration was carried out under N_{2} on a water-bath (<70 ${ }^{\circ} \mathrm{C}$) using a 30 cm unlagged Dufton column. Fractional distillation of the residue gave cis-trans-1-trimethylsilyl-
pent-3-en-1-yne ($12.35 \mathrm{~g}, 64 \%$; ca. $5: 4$ cis: trans), b.p. $68-75^{\circ}$ at 50 mmHg .
cis-trans-1-Trimethylsilylhex-3-en-1-yne (5b). Similarly, cis-trans-hex-3-en-1-yne (1 lb) ($8.7 \mathrm{~g}, 109 \mathrm{mmol}$) in THF (10 $\mathrm{ml}), \mathrm{EtBr}(9.45 \mathrm{~g}, 85 \mathrm{mmol})$, and Mg turnings $(2.1 \mathrm{~g}, 85$ mmol) in THF (50 ml), and $\mathrm{Me}_{3} \mathrm{SiCl}(9.45 \mathrm{~g}, 85 \mathrm{mmol}$) in THF (10 ml) gave cis-trans-1-trimethylsilylhex-3-en-1-yne $8.3 \mathrm{~g}, 50.5 \%$; ca. $1: 1$ cis : trans), b.p. $86-96^{\circ}$ at 55 mmHg . cis-trans-1-Trimethylsilylhept-3-en-1-yne (5c). cis-trans-Hept-3-en-1-yne (1c) ($17.7 \mathrm{~g}, 168 \mathrm{mmol}$) in THF (50 ml), EtBr ($22 \mathrm{~g}, 240 \mathrm{mmol}$) and Mg-turnings ($4.9 \mathrm{~g}, 240 \mathrm{mmol}$) in THF (200 ml), and $\mathrm{Me}_{3} \mathrm{SiCl}(31 \mathrm{~g}, 277 \mathrm{mmol})$ gave cis-trans-1-trimethylsilylhept-3-en-1-yne (24 g, 77\%; ca. 5:4 cis: trans).
trans-Hex-3-en-1-yne [trans-(1b)].-trans-1-Trimethyl-silylhex-3-en-1-yne [trans-(5 b)] ($99 \mathrm{mg}, 0.72 \mathrm{mmol}$; contaminated with $<2 \%$ cis-isomer) in $\mathrm{HCONMe}_{2}(1 \mathrm{ml})$ was added to a stirred suspension of $\mathrm{KF} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ ($500 \mathrm{mg}, 5.3$ mmol) in $\mathrm{HCONMe}_{2}(4 \mathrm{ml})$. After 30 min , g.l.c. showed $>90 \%$ conversion into trans-hex-3-en-1-yne ($<2 \%$ cisisomer); no other product was detected. The mixture was poured into dil. $\mathrm{HCl}(10 \mathrm{ml})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The extract was washed successively with dil. HCl and brine, and dried $\left(\mathrm{MgSO}_{4}\right)$. Filtration gave an $\mathrm{Et}_{2} \mathrm{O}$ solution of trans-hex-3-en-1-yne.

We thank I.C.I. for a Fellowship (to M. T. W. H.), and the S.R.C. for a studentship (to I. W. F.) and research grant support.
[8/122 Received, 25th January, 1978]

[^0]: ${ }^{1}$ Part 52, I. W. Farrell, V. Thaller, and J. L. Turner, J.C.S. Perkin 1, 1977, 1886.
 ${ }^{2}$ A more detailed account of part of the work described in this paper is in the D.Phil. Thesis of I. W. Farrell, Oxford, 1977.
 ${ }_{3}$ C. Chin, M. C. Cutler, Sir Ewart R. H. Jones, J. Lee, S. Safe, and V. Thaller, J. Chem. Soc. (C), 1970, 314.
 ${ }^{4}$ F. C. Fawcett, D. M. Spencer, R. L. Wain, A. G. Fallis, Sir Ewart R. H. Jones, M. Le Quan, C. B. Page, V. Thaller, D. C. Shubrook, and P. M. Whitham, J. Chem. Soc. (C), 1968, 2455.

[^1]: ${ }^{5}$ Cf. E. J. Corey and R. A. Ruden, Tetrahedron Letters, 1973, 1495.
 ${ }_{6}$ G. Eglinton and M. C. Whiting, J. Chem. Soc., 1950, 3650.
 7 A. Butenandt and E. Hecker, Angez. Chem., 1961, r33, 349.
 ${ }^{8}$ L. Brandsma, ' Preparative Acetylenic Chemistry,' Elsevier, Amsterdam, 1971, p. 124.
 ${ }^{9}$ J. L. H. Allan and M. C. Whiting, J. Chem. Soc., 1953, 3314.
 ${ }^{10} \mathrm{Cf}$. R. Eastmond, T. R. Johnson, and D. R. M. Walton, Tetrahedron, 1972, 28, 4601.

[^2]: ${ }^{11}$ R. Naylor, Tetrahedron Letters, 1975, 435.
 ${ }^{12}$ H. M. Schmidt and J. F. Arens, Rec. Trav. chim., 1967, 86, 1138.

